Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Volume 8 No. 1 pp. 15-30 March 2017

CRITICAL AND STABLE OUTER-CONNECTED DOMINATION NUMBER

S. SARATHA NELLAINAYAKI¹

Department of Mathematics, St. Xavier's College, Palayamkottai - 627 002, Tamil Nadu, INDIA

S. BALAMURUGAN²

Department of Mathematics, St. Xavier's College, Palayamkottai - 627 002, Tamil Nadu, INDIA E-mail:¹sarathas1993@gmail.com,²balamaths@rocketmail.com

Abstract

For a given graph G = (V, E), a set $D \subseteq V(G)$ is said to be an outer-connected dominating set if D is dominating and the graph G - D is connected. The outer-connected domination number of a graph G, denoted by $\tilde{\gamma}_c$, is the cardinality of a minimum outer-connected dominating set of G. In this paper we investigate the effects of a vertex removal on the outer-connected domination number of a graph.

Keywords: Domination number, outer-connected domination number.

(Received: 1st October 2016; Accepted: 1st December 2016)

1. Introduction

The outer-connected domination was introduced by Cyman in his paper "The outer-connected domination number of a graph" [2]. The study of analysing the effects of removal of a vertex on any domination parameter has remarkable applications in the field of network theory. So, in this paper the effect of a vertex removal on the outer-connected domination number of a graph is being studied. Let G = (V, E) be a simple graph. The open neighbourhood of a vertex v, denoted by N(v), is the set of all vertices adjacent to v in G and the closed neighbourhood is $N[v] = N(v) \cup \{v\}$. A vertex u is said to be a private neighbour of a vertex v with respect to a set D if $N[\mathbf{u}] \cap \mathbf{D} = \{\mathbf{v}\}$. The private neighbour set of a vertex v with respect to the set D is denoted by pn[v, D]. The degree $d_G(v)$, of a vertex v is the number of edges incident to v in G. The minimum and maximum degree among all vertices of G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A vertex *v* of degree $\Delta(G)$ is called a universal vertex, and a vertex of degree one is called a pendant vertex. An edge e with end vertices *u* and *v* is denoted by e = (u, v). If *u* is a pendant vertex, then (u, v) is called a pendant edge. A vertex v of G is called a support if it is adjacent to a pendant vertex. Let Ω be the set of all pendant vertices of G. Let K_n , C_n and P_n denote the complete graph, the cycle and the path of order n, respectively. For positive integers n_1, n_2, \dots, n_t , let K_{n_1, n_2, \dots, n_t} be the complete multipartite graph with vertex set $S_1 \cup S_2 \cup \cdots \cup S_t$, where $|S_i| = n_i$ for $1 \le i \le t$. A wheel W_n , where $n \ge 4$, is a graph with n vertices, formed by connecting a vertex to all vertices of a cycle C_{n-1} . A subdivision of an edge uv is obtained by removing edge uv, adding a new vertex w, and adding edges uw and vw. A wounded spider is the graph formed by subdividing at most t-1 edges of a star $K_{1,t}$. A caterpillar is a tree of order three or more, the removal of whose pendant vertices produces a path. For graph theoretic terminologies which are not specified here, we refer to the book by Chartrand and Lesniak [1].

A set D of vertices of a graph G is said to be a dominating set if every vertex in V-D is adjacent to a vertex in D. A set $D \subseteq V(G)$ is said to be an outer-connected dominating set of G if D is dominating and either D = V(G) or G-D is connected. The cardinality of a minimum outer-connected dominating set in G is called the outerconnected domination number of G and is denoted by $\tilde{\gamma}_c(G)$. An outer-connected dominating set of cardinality $\tilde{\gamma}_c$ is called a $\tilde{\gamma}_c$ – set. For other concepts in connected domination, refer to [3], [4] and [5].

2. Definitions and Preliminary results

Definition 2.1. The vertex set V(G) of a graph G can be partitioned into three sets \tilde{V}_c^- , \tilde{V}_c^+ and \tilde{V}_c^0 , according to how the removal of a vertex affects the outer-connected domination number of G. Here,

$$\tilde{V}_{c}^{-} = \{ \mathbf{v} \in V(G) / \tilde{\gamma}_{c}(\mathbf{G} - \mathbf{v}) < \tilde{\gamma}_{c}(\mathbf{G}) \}$$
$$\tilde{V}_{c}^{+} = \{ \mathbf{v} \in V(G) / \tilde{\gamma}_{c}(\mathbf{G} - \mathbf{v}) > \tilde{\gamma}_{c}(\mathbf{G}) \} \text{ and}$$
$$\tilde{V}_{c}^{0} = \{ \mathbf{v} \in V(G) / \tilde{\gamma}_{c}(\mathbf{G} - \mathbf{v}) = \tilde{\gamma}_{c}(\mathbf{G}) \}.$$

Example 2.2. Consider the graph *G* given in Figure 2.1. Here $\tilde{V}_c^- = \{v_5, v_6\}, \tilde{V}_c^+ = \{v_1, v_3\} \text{ and } \tilde{V}_c^0 = \{v_2, v_4\}.$

Figure 2.1.

Theorem 2.3. [2]
(i)
$$\tilde{\gamma}_{c}(K_{n}) = 1$$
 for $n \ge 1$.
(ii) $\tilde{\gamma}_{c}(\mathbf{C}_{n}) = n - 2$ for $n \ge 3$.
(iii) $\tilde{\gamma}_{c}(\mathbf{P}_{n}) = \begin{cases} n - 1, & n = 2, 3\\ n - 2, & n \ge 4 \end{cases}$
(iv) If $t \ge 2$ and $n_{1} \le n_{2} \le ... \le n_{t}$ then
 $\tilde{\gamma}_{c}(\mathbf{K}_{n_{1},n_{2},...,n_{t}}) = \begin{cases} n_{2} & \text{if } t = 2 \text{ and } n_{1} = 1, \\ 1 & \text{if } t \ge 3 \text{ and } n_{1} = 1, \\ 2 & \text{if } t \ge 2 \text{ and } n_{1} > 1. \end{cases}$

Theorem 2.4. [2] If G is a connected graph on $n \ge 2$ vertices, then $\tilde{\gamma}_c(G) = n-1$ if and only if G is a star.

Theorem 2.5. [2] If G_1, \ldots, G_r are the components of a graph G, then $\tilde{\gamma}_c(G) = |V(G)| - \max\{|V(G_i)| - \tilde{\gamma}_c(G_i): i = 1, \ldots, r\}.$

3. Generalized graphs

Theorem 3.1. For a complete graph on n vertices, $V(K_n) = \tilde{V}_c^0(K_n)$, $n \ge 2$.

Proof. Let v be any vertex of K_n . Then by Theorem 2.3(i), $\tilde{\gamma}_c(K_n - v) = \tilde{\gamma}_c(K_{n-1}) = 1 = \tilde{\gamma}_c(K_n), \quad \forall v \in V(K_n).$ Hence, $V(K_n) = \tilde{V}_c^0(K_n).$

Theorem 3.2. For a path on *n* vertices, $V(P_n) = \tilde{V}_c^-(P_n)$, when $n \ge 8$.

Proof. Let v be any vertex of P_n . If $P_n - v$ is connected then by Theorem 2.3(iii) $\tilde{\gamma}_c(P_n - v) = n - 1 - 2 = n - 3 < \tilde{\gamma}_c(P_n) = n - 2$. (Here $n - 2 \ge 4$ as $n \ge 8$). Suppose $P_n - v$ is disconnected. Let P_{m_1} , P_{m_2} be the two components of $P_n - v$ so that $m_1 + m_2 + 1 = n$. Without loss of generality, we assume that $m_1 \ge m_2$. By Theorem 2.5, $\tilde{\gamma}_c(P_n - v) = |V(P_n - v)| - max \{|V(P_{m_1})| - \tilde{\gamma}_c(P_{m_1}),$ $|V(P_{m_2})| - \tilde{\gamma}_c(P_{m_2})\}.$

Case 1: Suppose $m_2 \leq 3$. Then $m_1 \geq 4$. By Theorem 2.3(iii), $\tilde{\gamma}_c(P_{m_1}) = m_1 - 2$ and $\tilde{\gamma}_c(P_{m_2}) = m_2 - 1$. Therefore $\tilde{\gamma}_c(P_n - v) = n - 1 - max\{m_1 - (m_1 - 2), m_2 - (m_2 - 1)\} = n - 1 - max\{2, 1\} = n - 1 - 2 = n - 3$.

Case 2: Suppose $m_2 \ge 4$. Then $m_1 \ge 4$. (Since $m_1 \ge m_2$). Once again by Theorem 2.3(iii), $\tilde{\gamma}_c(P_{m_1}) = m_1 - 2$ and $\tilde{\gamma}_c(P_{m_2}) = m_2 - 2$.

Therefore

$$\tilde{\gamma}_{c}(Pn-v) = n - 1 - max\{m_{1} - (m_{1} - 2), m_{2} - (m_{2} - 2)\}\$$

= $n - 1 - max\{2, 2\} = n - 3.$

Hence in both the above two case, $\tilde{\gamma}_c(P_n - v) = n - 3 < \tilde{\gamma}_c(P_n) = n - 2$. Therefore $V(P_n) = \tilde{V}_c^-(P_n), n \ge 8$.

Theorem 3.3. For a cycle on n vertices,

$$V(\mathbf{C}_n) = \begin{cases} \tilde{V}_c^0, & n = 3 \text{ or } 4, \\ \tilde{V}_c^-, & otherwise. \end{cases}$$

Proof. **Case 1**: Let n = 3. By Theorem 2.3(ii), $\tilde{\gamma}_c(C_3) = 1$. Also $C_3 - v = P_2$, for any $v \in V(C_3)$ and again by Theorem 2.3(iii), $\tilde{\gamma}_c(P_2) = 1$. Therefore $V(C_3) = \tilde{V}_c^0$. Now let n = 4. Then by the similar argument $\tilde{\gamma}_c(C_4 - v) = \tilde{\gamma}_c(P_3) = 2$, $\forall v \in V(C_4)$. Thus $V(C_4) = \tilde{V}_c^0$.

Case 2: Let $n \ge 5$. By Theorem 2.3(*ii*), $\tilde{\gamma}_c(C_n) = n-2$ and $\tilde{\gamma}_c(C_n - v) = \tilde{\gamma}_c(P_{n-1}) = n-3$. (Since $n-1 \ge 4$). Therefore $\tilde{\gamma}_c(C_n - v) < \tilde{\gamma}_c(C_n)$, $\forall v \in V(C_n)$ and hence $V(C_n) = \tilde{V}_c^-(C_n)$.

Note that if $G = K_2$, then by Theorem 3.1, $V(K_2) = \tilde{V}_c^0(K_2)$. Now, in the following theorem we consider a complete bipartite graph other than K_2 .

Theorem 3.4. Let G = G(V, E) be a complete bipartite graph with bipartition $V = V_1 \cup V_2$, where $|V_1| = n_1$ and $|V_2| = n_2$ $(n_2 \ge n_1)$.

(i) If
$$n_1 = 1$$
, then $v \in \begin{cases} \tilde{V}_c^0(G), & \text{if } v \in V_1 \\ \tilde{V}_c^-(G), & \text{otherwise.} \end{cases}$

(ii)

If
$$n_1 = 2$$
 and $n_2 > n_1$ then $v \in \begin{cases} \tilde{V}_c^+(G), & \text{if } v \in V_1 \\ \tilde{V}_c^0(G), & \text{otherwise.} \end{cases}$

(iii)

If
$$n_1 = n_2 = 2$$
 or $n_2 \ge n_1 \ge 3$, then $V(G) = \tilde{V}_c^0(G)$.

Proof. (i) Suppose $n_1 = 1$. By Theorem 2.3(*iv*), $\tilde{\gamma}_c(G) = n_2$. Let $v \in V_1$. Then $\langle G - v \rangle$ is totally disconnected. Therefore $\tilde{\gamma}_c(G - v) = n_2 = \tilde{\gamma}_c(G)$ and so $v \in \tilde{V}_c^0(G)$. Suppose $v \notin V_1$. Then $\langle G - v \rangle$ is again a star graph K_{1,n_2-1} . Then by Theorem 2.4, we have $\tilde{\gamma}_c(G - v) = \tilde{\gamma}_c(K_{1,n_2-1}) = (1 + n_2 - 1) - 1 = n_2 - 1$ $\langle \tilde{\gamma}_c(G) = n_2$. Hence $v \in \tilde{V}_c^-(G)$.

> (ii) Now by Theorem 2.3(*iv*), $\tilde{\gamma}_c(G) = 2$. Let $v \in V_1$. Then $\langle G - v \rangle$ is a star graph K_{1,n_2} . By Theorem 2.4, $\tilde{\gamma}_c(G-v) = 1 + n_2 - 1 = n_2 > \tilde{\gamma}_c(G) = 2$. Hence $v \in \tilde{V}_c^+(G)$. Suppose $v \notin V_1$. Then $\langle G - v \rangle$ is again a complete bipartite graph K_{2,n_2-1} . Then by Theorem 2.3(*iv*), $\tilde{\gamma}_c(G-v) = 2 = \tilde{\gamma}_c(G)$. Hence $v \in \tilde{V}_c^0(G)$.

(ii) Suppose $n_1 = n_2 = 2$. Then for any vertex $v \in V(G)$, $\tilde{\gamma}_c(G-v) = \tilde{\gamma}_c(P_3) = 2 = \tilde{\gamma}_c(C_4) = \tilde{\gamma}_c(G)$ (by Theorem 2.3(*ii*), (*iii*)). Hence $V(G) = \tilde{V}_c^0(G)$. Suppose $n_2 \ge n_1 \ge 3$. Let v be any vertex of G. Then $\langle G-v \rangle$ is again a complete bipartite graph. Then by Theorem 2.3(*iv*),

$\tilde{\gamma}_c(G-v) = 2 = \tilde{\gamma}_c(G)$. Hence $V(G) = \tilde{V}_c^0(G)$.

Theorem 3.5. Let W_n be a wheel of order n. Then for any vertex $v \in V(W_n)$, we have,

$$v \in \begin{cases} \tilde{V}_{c}^{0}, & if \quad n = 4 \text{ or } v \text{ is a non-universal vertex} \\ \tilde{V}_{c}^{+}, & otherwise \end{cases}$$

Proof. Let v be the universal vertex of W_n . Then clearly, $\{v\}$ will form a dominating set of W_n and $W_n - v = C_{n-1}$, which is a connected graph. Therefore $\{v\}$ is an outer-connected dominating set of W_n and so $\tilde{\gamma}_c(W_n) = 1$.

Now let n = 4 and u be any vertex of W_4 . Then $\tilde{\gamma}_c(W_4 - u) = \tilde{\gamma}_c(C_3) = 1 = \tilde{\gamma}_c(W_4)$. Hence $u \in \tilde{V}_c^0$.

Now let us assume that $n \ge 5$ and u be any vertex of W_n . Then we have the following cases.

Case 1 : Suppose u = v. Then $\langle W_n - u \rangle$ is a cycle of order n-1. Therefore $\tilde{\gamma}_c(W_n - u) = \tilde{\gamma}_c(C_{n-1}) = n-1-2 = n-3 > \tilde{\gamma}_c(W_n)$, $(n-3 > 1 \text{ as } n \ge 5)$. Hence $u \in \tilde{V}_c^+$.

Case **2**: Suppose $u \neq v$. Then the universal vertex $\{u\}$ will form an outer-connected dominating set of $W_n - u$. Therefore $\tilde{\gamma}_c(W_n - u) = 1 = \tilde{\gamma}_c(W_n)$ and so $u \in \tilde{V}_c^0(G)$.

4. More Results

Theorem 4.1. Let p be a pendant vertex of a graph G. Then there exists a minimum outer-connected dominating set D of G such that $p \notin D$ if and only if G is a star.

Proof. First, let us assume that there exists a minimum outer-connected dominating set D such that $p \notin D$. Since V(G) - D is connected and p is an isolated vertex in $\langle V(G) - D \rangle$, p must be the only vertex in V(G) - D. Therefore $\tilde{\gamma}_c(G) = n - 1$. By Theorem 2.4, G is a star. Converse is obvious.

Observation 4.2. From the above theorem we can observe that for every graph, other than star, all pendant vertices belong to every outer-connected dominating set.

Theorem 4.3. Let $G(\neq K_{1,n}, n \ge 1)$ be a graph and (p,q) be a pendant edge of G. Then for any $\tilde{\gamma}_c$ - set D of G, we have,

(i) If
$$q \in D$$
, then $p \in V_c^-(G)$.
(ii) Let $q \notin D$.
(ii) Let $q \notin D$.
(a) If $q \notin pn[p,D]$, then $p \in \tilde{V}_c^-(G)$.
(b) If $q \in pn[p,D]$, then
 $p \in \begin{cases} \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G), & \text{if } q \text{ is not a cutvertex of } \langle G - D \rangle \\ \tilde{V}_c^0(G) \cup \tilde{V}_c^+(G), & \text{otherwise.} \end{cases}$

Proof. (i) Since the only neighbour of p is in D, D-p is a dominating set for G-p and $\langle (G-p)-(D-p) \rangle$ is connected.

Therefore D-p is an outer-connected dominating set for G-p. Thus $\tilde{\gamma}_c(G-p) \leq |D-p| < |D| = \tilde{\gamma}_c(G)$. Hence $p \in \tilde{V}_c^-(G)$.

- (ii) Let $q \notin D$.
 - (a) Given $q \notin pn[p, D]$. Then (D' =)D p will be a dominating set for G - p. Also p is not an internal a path between of vertex two vertices in < (G-p)-D' >. Therefore < (G-p)-D' >is connected. Hence D' is a an outer-connected dominating for G-p. Therefore set $\tilde{\gamma}_{c}(G-p) \leq |D'| < |D| = \tilde{\gamma}_{c}(G)$ and so $p \in \tilde{V}_{a}^{-}(G).$
 - (b) Let *q* ∈ *pn*[*p*,*D*]. Then no vertex of *D'* will dominate *q* in *G*−*p*. Therefore either the vertex *q* or some vertices have to be selected together with the set *D'* to form a dominating set for *G*−*p*. Now we have the following cases.

Case 1: If q is not a cut vertex of $\langle G - D \rangle$, then $\langle (G - p) - (D' \cup \{q\}) \rangle$ will be connected and therefore $D' \cup \{q\}$ is an outerconnected dominating set for G - p. Thus $\tilde{\gamma}_c(G - p) \leq |D' \cup \{q\}| \leq |D| = \tilde{\gamma}_c(G)$. Hence $p \in \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G)$.

Case 2: Now let us assume that q is a cut vertex of $\langle G-D \rangle$. Then $<(G-p)-(D'\cup \{q\})>$ is disconnected. Now let C_t be a component of minimum cardinality in $<(G-p)-(D'\cup \{q\})>$. Also the set $D'\cup C_t$ will be a minimum outerconnected dominating set for G-p, as the vertices of C_t will dominate the vertex and C_t is minimum. Thus $\tilde{\gamma}_c(G-p)=|D'|+|C_t|\geq$ $|D|=\tilde{\gamma}_c(G)$. Thus $p\in \tilde{V}_c^0(G)\cup \tilde{V}_c^+(G)$.

Theorem 4.4. Let G be a graph and D be any minimum outer-connected dominating set of G. For every $v \in D$, if $pn[v,D] = \varphi$, then $v \in \tilde{V}_c^-(G)$.

Proof. Suppose that $pn[v, D] = \varphi$. Then every neighbour of v is adjacent to some vertices of D. Thus D - v is a dominating set for G - v. Since $v \in D$ and $\langle G - D \rangle$ is connected, $\langle (G - v) - (D - v) \rangle$ is connected. Hence D - v is an outer-connected dominating set of G - v. Thus $\tilde{\gamma}_c(G - v) \leq |D| - 1 < |D| = \tilde{\gamma}_c(G)$. Therefore $v \in \tilde{V}_c^-(G)$.

Theorem 4.5. Let G be a wounded spider with n vertices. Then

$$p \in \begin{cases} \tilde{V}_c^0(G) \cup \tilde{V}_c^+(G), & \text{if } \deg p = \Delta(G) \\ \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G), & \text{otherwise.} \end{cases}$$

Proof. Let *G* be a wounded spider by subdividing *s* edges of a star $K_{1,t}$, where $0 \le s \le t-1$. Let *D* be the set of all pendant vertices of *G*. Then |D|=t. It can be easily verified that, *D* forms a outer-connected dominating set for *G*. Further if *D*' is an outer-connected dominating

set for *G* other than *D*. Clearly G-D' can have at most one pendant vertex, say p_1 , and therefore $|D'| \ge t-1$. Further to dominate the vertex p_1 at least one non pendant vertex should be included in D'. Thus $|D'| \ge |D|$ and so *D* is a minimum outer-connected dominating set for *G*.

p is a pendant vertex of (i) Suppose G and $(p,q) \in E(G)$. Then $q \notin D$. Suppose q is not a private neighbour of p. Then by Theorem 4.3 (ii), $p \in \tilde{V}_c^-(G)$. Suppose *q* is a private neighbour of *p* in $\langle V(G) - D \rangle$. Since *G* is a wounded spider, $deg_G q = 2$ is either two or $\Delta(G)$. Suppose $deg_{G} q = 2$. Then q is adjacent with p and a vertex of maximum degree. Therefore $deg_{G-D} q = 1$. Thus q is not a $\langle G - D \rangle$. By cut vertex in Theorem 4.3(*ii*), $v \in \tilde{V}^0_c(G) \cup \tilde{V}^-_c(G).$

Suppose $deg_G q = \Delta(G)$. Since q is the private neighbour of p, then in the star $K_{1,t}$, t-1 edges should have been subdivided. Therefore there are t-1 vertices of degree two in G. Choose one such vertex, say w. Now the set $D' = (D - \{p\}) \cup \{w\}$ dominates $G - \{p\}$. Since $deg_G w = 2$, w is adjacent to q and a pendant. Therefore $deg_{\langle G-D \rangle} w = 1$ so that $\langle (G - \{p\}) - D' \rangle$ is connected. Thus D' forms an outer-connected dominating set for G - p. Hence $\tilde{\gamma}_c(G - \{p\}) \leq |D'| = |D| = \tilde{\gamma}_c(G)$. Hence $p \in \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G)$.

- (ii) Let deg p = 2. Since p∈G−D, D is a dominating set for G−p also. Further deg p = 1 in < G−D >, removal of p will not affect the connectivity of G−D. Thus D is a outer-connected dominating set for G−p, and so γ̃_c(G−p)≤|D|=γ̃_c(G). Hence v∈Ṽ_c⁰(G)∪Ṽ_c⁻(G).
- (iii) Now let us assume that $deg \ p = \Delta(G)$. Consider $< G - \{p\} >$. Suppose $deg_G \ p = n - 1$. Then $< G - \{p\} >$ is totally disconnected and G is a star $K_{1,n-1}$. Then by Theorem 3.4, we have $p \in \tilde{V}_c^0(G)$. Suppose $deg \ p < n - 1$. Then $< G - \{p\} >$ is a disconnected graph having s copies of K_2 , where $s \ge 1$ and t - s copies of K_1 . Then by Theorem 2.5, $\tilde{\gamma}_c(G - \{p\}) = n - 1 - max\{1, 0\} = n - 1 - 1 = n - 2$ $= (1 + t + s) - 2 = t + s - 1 \ge t = \tilde{\gamma}_c(G)$ (since $s \ge 1$). Hence $p \in \tilde{V}_c^0(G) \cup \tilde{V}_c^+(G)$, if $deg \ p = \Delta(G)$.

Theorem 4.6. Let G be a caterpillar with n vertices and Ω be the set of all pendant vertices of G. If Ω forms a dominating set for G then any vertex $v \in V(G) - \Omega$,

$$v \in \begin{cases} \tilde{V}_{c}^{0}(G) \cup \tilde{V}_{c}^{-}(G), & \text{if } \deg_{\langle V(G) - \Omega \rangle} v = 1 \\ \tilde{V}_{c}^{+}(G), & \text{otherwise.} \end{cases}$$

Proof. Since *G* is a caterpillar, degree of any vertex is either one or two in $\langle V(G) - \Omega \rangle$. Let $v \in V(G) - \Omega$. Since Ω dominates *G* and $v \in V(G) - \Omega$, Ω dominates $G - \{v\}$.

Case 1 : Suppose $deg \ v = 1$ in $\langle V(G) - \Omega \rangle$. Since $\langle V(G) - \Omega \rangle$ is connected and $deg \ v = 1$ in $\langle V(G) - \Omega \rangle$, $\langle (V(G) - \{v\}) - \Omega \rangle$ is connected. Thus Ω is an outerconnected dominating set of $G - \{v\}$ and $\tilde{\gamma}_c(G - \{v\}) \leq |\Omega| = \tilde{\gamma}_c(G)$. Therefore $v \in \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G)$.

Case 2 : Suppose $deg \ v = 2$ in $\langle V(G) - \Omega \rangle$. Since G is a caterpillar, $\langle G - \Omega \rangle$ is a path. Also since $deg \ v = 2$, $\langle (V(G) - \{v\}) - \Omega \rangle$ is disconnected into exactly two components. Let C_1 be the minimum cardinality of those components and consider the set $\Omega' = C_1 \cup \Omega$. Clearly Ω' dominates $G - \{v\}$ and $\langle G - \{v\} - \Omega' \rangle$ is connected. Therefore Ω' forms a minimum outer-connected dominating set for $G - \{v\}$ (Since and C_1 is minimum). Thus $\tilde{\gamma}_c(G - \{v\}) = |\Omega'| > |\Omega| = \tilde{\gamma}_c(G)$. Hence $v \in \tilde{V}_c^+(G)$.

Theorem 4.7. Let G be a caterpillar and Ω be the set of all pendant vertices of G. For any minimum outer-connected dominating set D of G, $D - \Omega \subseteq \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G)$.

Proof: Let $v \in D - \Omega$. Suppose v has no private neighbours. Then clearly $D - \{v\}$ dominates $G - \{v\}$. Since $\langle G - D \rangle$ is connected and $v \in D$, $\langle (G - \{v\}) - (D - \{v\}) \rangle$ is connected. Therefore $D - \{v\}$ forms an outer-connected dominating set of $D - \{v\}$. Thus $\tilde{\gamma}_c(G - \{v\}) \leq |D| - 1 < |D| = \tilde{\gamma}_c(G)$. Hence $v \in \tilde{V}_c^-(G)$.

Suppose *v* has a private neighbour, say *u*, in $\langle G-D \rangle$. Also since $\Omega \subset D$, *u* is not a pendant vertex of *G*. Consider $G - \{v\}$.

Clearly *u* is not dominated by $D - \{v\}$. Therefore consider the set $D' = (D - \{v\}) \cup \{u\}$. Since $u \in V(G) - D$ and *G* is a caterpillar, *u* lies in the path. Then $deg_{\leq G-D >} u$ is either one or two.

Suppose $\deg u = 2$ in $\langle V(G) - D \rangle$. Let u_1 and u_2 be the neighbours of u in $\langle V(G) - D \rangle$. Then v, u_1 and u_2 are non-pendant vertices of G and hence $G - \Omega$ is not a path, which is a contradiction to the fact G is a caterpillar. Therefore $\deg u \neq 2$. So $\deg u = 1$ in $\langle V(G) - D \rangle$. Then clearly $\langle (G - \{v\}) - D' \rangle$ is connected. Thus D' is a outer-connected dominating set for $G - \{v\}$ and therefore $\tilde{\gamma}_c(G - \{v\}) \leq |D'| = |D| = \tilde{\gamma}_c(G)$. Hence $v \in \tilde{V}_c^0(G) \cup \tilde{V}_c^-(G)$.

References

[1] G. Chartrand and Lesniak, Graphs and Digraphs, Fourth edition, CRC press, Boca Raton, 2005.

[2] J. Cyman, The outer-connected domination of a graph, *Australasian journal of Combinatorics*, 38(2007), 35-46.

[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker, New York, 1998.

[4] S. T. Hedetniemi and R. C. Laskar, Connected domination in graphs. In Bollobas, editor, *Graph Theory and Combinatorics* 209-218. Acadamic Press, London, 1984.

[5] E. Sampathkumar and H.B. Walikar, The connected dominnation number of a graph, *J. Math. Phys. Sci.*, 13(1979), 607 - 613.